Endothelial cell scaffolds generated by 3D direct writing of biodegradable polymer microfibers.
نویسندگان
چکیده
The engineering of large (thickness > 100 μm) tissues requires a microvascular network to supply nutrients and remove waste. To produce microvasculature in vitro, a scaffold is required to mechanically support and stimulate endothelial cell (EC) adhesion and growth. Scaffolds for ECs are currently produced by patterning polymers or other biomaterials into configurations which often possess isotropic morphologies such as porous films and fibrous mats. We propose a new "direct-write" process for fabricating scaffolds composed of suspended polymer microfibers that are precisely oriented in 3D, providing directional architecture for selectively guiding cell growth along a desired pathway. The diameters of the fibers produced with this process were predictably and repeatably controlled through modulation of the system parameters, enabling production of fibers with microvascular-scale diameters (5-20 μm) from a variety of biodegradable polymers. These scaffolds were successfully seeded with ECs, which conformed to the geometry of the fibers and proliferated over the course of one week.
منابع مشابه
Fabrication and Functionalization of Three-Dimensional Well-defined Scaffolds Using Novel Carbon Dioxide Assisted Microfabrication
INTRODUCTION Recent trends in tissue engineering have aimed at simulating the microenvironment in vitro to successfully engineer human tissue into artificial organs. Tissue scaffolds have played a major role in reconstructing this microenvironment, and the cell-scaffold interaction also affects cell proliferation, differentiation, migration and function. A variety of tissue scaffolds ranging fr...
متن کاملElectrospray deposition and direct patterning of polylactic acid nanofibrous microcapsules for tissue engineering
Electrospun nanofibers composed of biodegradable polymers are attractive candidates for cell culture scaffolds in tissue engineering. Their fine-meshed structures, resembling natural extracellular matrices, effectively interact with cell surfaces and promote cell proliferation. The application of electrospinning, however, is limited to two-dimensional (2D) or single tube-like scaffolds, and the...
متن کاملFunctionalized synthetic biodegradable polymer scaffolds for tissue engineering.
Scaffolds (artificial ECMs) play a pivotal role in the process of regenerating tissues in 3D. Biodegradable synthetic polymers are the most widely used scaffolding materials. However, synthetic polymers usually lack the biological cues found in the natural extracellular matrix. Significant efforts have been made to synthesize biodegradable polymers with functional groups that are used to couple...
متن کامل3D Microtomographic Characterization of Precision Extruded Poly- -caprolactone Scaffolds
One of the dominant approaches to tissue engineering is the seeding of biodegradable, biocompatible polymer scaffolds with progenitor cells prior to 3D culture or implantation. The microarchitecture of these scaffolds has direct effects upon the ability of cells to attach, migrate, and differentiate. Microtomographic (micro-CT) scanners enable high-speed 3D characterization of the salient featu...
متن کاملSynthesis of biodegradable photocrosslinkable polymers for stereolithography-based 3D fabrication of tissue engineering scaffolds and hydrogels
Aalto University, P.O. Box 11000, FI-00076 Aalto www.aalto.fi Author Laura Elomaa Name of the doctoral dissertation Synthesis of biodegradable photocrosslinkable polymers for stereolithography-based 3D fabrication of tissue engineering scaffolds and hydrogels Publisher School of Chemical Technology Unit Department of Biotechnology and Chemical Technology Series Aalto University publication seri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biomaterials
دوره 32 7 شماره
صفحات -
تاریخ انتشار 2011